Lithogeochemical and sulfide trace element systematics across the Permian–Triassic boundary, Perth Basin, Western Australia: Constraints on the shallow marine environment during the End-Permian Mass Extinction

E. Lounejevaa*, J. A. Steadmana, R. R. Largea, K. Griceb, P. Olina, and I. Belousova

^a CODES, Centre for Ore Deposit and Earth Sciences, University of Tasmania, Private Bag 79, Hobart, Tasmania, Australia; ^b Western Australian Organic and Isotope Geochemistry Centre, School of Earth and Planetary Science, Curtin University, Perth, Western Australia, Australia

* contact e-mail: elena.lounejeva@utas.edu.au

Elena Lounejeva <u>0000-0002-2462-8623</u> Jeffrey Steadman <u>0000-0003-4679-3643</u> Ross Large <u>0000-0003-0012-0101</u> Kliti Grice <u>0000-0003-2136-3508</u> Paul Olin <u>0009-0003-8630-7029</u> Ivan Belousov <u>0000-0002-9224-6408</u>

Received 7 December 2022; accepted 29 March 2023 Editorial handling: Anita Andrew

SUPPLEMENTAL DATA

Australian Journal of Earth Sciences (2023), 70(5), https://doi.org/10.1080/08120099.2023.2200476

Copies of Supplementary Papers may be obtained from the Geological Society of Australia's website (<u>www.gsa.org.au</u>), the Australian Journal of Earth Sciences website (www.ajes.com.au) or from the National Library of Australia's Pandora archive (<u>https://pandora.nla.gov.au/tep/150555</u>).

Supplemental data

Table. List of samples and data used in this study	1
Figure TESPY Downhole patterns	5
Figure TESPY Scatter plot as an alternative presentation of the main change in trace elements composit	ion
of pyrite composition from the Hovea Member sediments	6
LA-ICPMS analysis specifications.	7
LA-ICPMS data statistics	7
Dealing with the below detection limits values	7
Screening	8
Correlations	9
PCA	10
Pb and Se-rich deteriorated (sooty) aggregates	12
HO3-1987.03 fossils (polished mount 2500 mm in diameter). Reflected and UV light	13
References	14
Petrographic observations	15
Bulk rock Geochemical data (Excel workbook)	

Pyrite Geochemical data (Excel workbook)

Table. List of samples and data used in this study.

SAMPLEID	SPI/INI	Relative	Period	Method	Laboratory	Reference
		depth				
		elevation				
RB2_3791.7	SPI	14.85	Triassic	LA-ICPMS and ME-MS61	1	4
 RB2_3792.9	SPI	13.65	Triassic	LA-ICPMS	2	
 RB2_3795.7	SPI	10.85	Triassic	LA-ICPMS and ME-MS61	1	4
RB2_3797.3	SPI	9.25	Triassic	LA-ICPMS	2	
RB2_3797.8	SPI	8.75	Triassic	LA-ICPMS and ME-MS61	1	4
RB2_3798.3	SPI	8.25	Triassic	LA-ICPMS and ME-MS61	1	4
RB2_3799.2	SPI	7.35	Triassic	LA-ICPMS and ME-MS61	1	4
RB2_3799.93	SPI	6.62	Triassic	LA-ICPMS and ME-MS61	1	4
RB2_3800.4	SPI	6.15	Triassic	LA-ICPMS and ME-MS61	1	4
RB2_3800.6	SPI	5.95	Triassic	LA-ICPMS and ME-MS61	1	4
RB2_3801.12	SPI	5.43	Triassic	LA-ICPMS and ME-MS61	1	4
RB2_3801.7	SPI	4.85	Triassic	LA-ICPMS and ME-MS61	1	4
RB2_3802.15	SPI	4.40	Triassic	LA-ICPMS and ME-MS61	1	4
RB2_3803.2	SPI	3.35	Triassic	LA-ICPMS and ME-MS61	1	4
?PTB between 38	803.76 and	3804.14			•	
RB2_3803.8		2.75	EPMEI	LA-ICPMS and ME-MS61	1	4
3804.14/3814.5 F	. microcol	<i>pus</i> zone				
top in RB2 no sar	nple	•	EPMEI			5
RB2_3804.6	INI	1.95	EPMEI	LA-ICPMS and ME-MS61	1	4
RB2_3805.4	INI	1.15	EPMEI	LA-ICPMS and ME-MS61	1	4
RB2_3806.15	INI	0.40	EPMEI	LA-ICPMS and ME-MS61	1	4
RB2_3806.51	INI	0.04	EPMEI	LA-ICPMS and ME-MS61	1	4
3806.55 level cere	o in RB2,	δ ¹³ C			-	
RB2_3806.55	INI	_	EPMEI	LA-ICPMS and ME-MS61	1	4
RB2_3807.1	INI	-0.55	EPMEI	LA-ICPMS and ME-MS61	1	4
RB2_3807.35	INI	-0.80	EPMEI	LA-ICPMS and ME-MS61	1	4
RB2_3808.13	INI	-1.58	EPMEI	LA-ICPMS and ME-MS61	1	4
RB2_3808.9	INI	-2.35	Permian	LA-ICPMS	2	
RB2_3809.62	INI	-3.07	Permian	LA-ICPMS	2	
RB2_3809.73	INI	-3.18	Permian	LA-ICPMS and ME-MS61	1	4
RB2_3810.4	INI	-3.85	Permian	LA-ICPMS	2	
RB2_3811	INI	-4.45	Permian	LA-ICPMS	2	
RB2_3811.8	INI	-5.25	Permian	LA-ICPMS	2	
RB2_3812.2	INI	-5.65	Permian	LA-ICPMS	2	
RB2_3812.7	INI	-6.15	Permian	LA-ICPMS	2	6
RB2_3813.6	INI	-7.05	Permian	LA-ICPMS and ME-MS61	1	4
RB2_3815.5	INI	-8.95	Permian	LA-ICPMS	2	
RB2_3815.95	INI	-9.40	Permian	LA-ICPMS	2	
RB2_3816.9	INI	-10.35	Permian	LA-ICPMS	2	
RB2_3818.76	INI	-12.21	Permian	LA-ICPMS	2	
RB2_3821.3	INI	-14.75	Permian	LA-ICPMS	2	
RB2_3823.8	INI	-17.25	Permian	LA-ICPMS	2	
RB2_3825.6	INI	-19.05	Permian	LA-ICPMS	2	
RB2_3827.4	INI	-20.85	Permian	LA-ICPMS	2	
RB2_3830.6	INI	-24.05	Permian	LA-ICPMS	2	
RB2_3831.2	INI	-24.65	Permian	LA-ICPMS	2	

SAMPLEID	SPI/INI	Relative	Period	Method	Laboratory	Reference
		elevation				
			Demailere			
RD2_3832.1		-25.55	Permian		2	
DD2_3034.3		-27.75	Permian	LA-ICENIS	2	4
HD2_3033.3		-20.75	Triogolo		1	4
HO3-1966.30	001	12.00	Triagolo	LA-ICPINS 4 april	2	7
HO3-1966.56	001	12.39	Triagolo		3	1
HO3-1969.06	001	11.69	Triagolo		2	
HO3-1969.47	001	10.05	Triagolo		2	
HO3-1970.00	001	10.95	Triagolo	LA-ICPINS 4 april	2	7
HO3-1970.91	071 001	0.14	Triagolo		3	7
HO3-1971.61	001	9.14	Triagolo		3	1
HO3-1973.05	001	7.90	Triagolo	LA-ICPINS 4 april	2	7
HO2 1074 01	001	7.04	Triagolo		3	7
HO3-1974.21	50	6.74	Triagolia		3	7
HO3-1974.41		6.54	Triassic		3	7
HO3-1975.56	SPI	5.39	Triassic		3	7
HO3-1975.71	SPI	5.24	Triassic		3	/
HO3-1976.00	SPI	4.95	Triassic		2	
HO3-1977.21	SPI	3.74			3	/
HO3-1978.16	SPI	2.79	Triassic		3	/
HO3-1978.50	SPI	2.45			2	
HO3-19/9.00	SPI	1.95		LA-ICPMS	2	
HO3-19/9.16	SPI	1.79	Triassic		3	/
HO3-1979.50	SPI	1.45	Triassic	LA-ICPMS	2	
HO3-1979.51	SPI	1.44	Triassic		3	7
HO3-19/9.91	SPI	1.04			3	/
HO3-1980.00	SPI	0.95	Triassic	LA-ICPMS	2	
HO3-1980.03	SPI	0.92	Iriassic	LA-ICPMS	2	
HO3-1980.26	SPI	0.69	Iriassic		3	7
HO3-1980.40	SPI	0.55		LA-ICPMS	2	
HO3-1980.56	SPI	0.39	Triassic		3	/
HO3-1980.7	SPI	0.25	Iriassic	4 acids	3	7
HO3-1980.85 PT	8	0.40				8
HO3-1980.86	SPI	0.10	EPMEI		3	/
HO3-1980.865	SPI	0.09	EPMEI		3	/
HO3-1980.875	SPI	0.08	EPMEI		3	/
HO3-1980.885	SPI	0.07	EPMEI		3	/
HO3-1980.895	SPI	0.06	EPMEI		3	/
HO3-1980.905	SPI	0.05	EPMEI		3	/
HO3-1980.915	SPI	0.04	EPMEI		3	/
HO3-1980.925	SPI	0.03	EPMEI	4 acids	3	7
HO3-1980.93 ?SH	JI/INI	0.00				_
HU3-1980.935		0.02		4 acids	3	/
HU3-1980.945		0.01	EPMEI	4 acids	3	/
HU3-1980.95				4		_
HO3-1980.955		-0.00	EPMEI	4 acids	3	7
HO3-1980.965		-0.01	EPMEI	4 acids	3	7
HU3-1980.975		-0.02	EPMEI	4 acids	3	/
HO3-1980.985		-0.03	EPMEI	4 acids	3	7
HO3-1980.995	INI	-0.04	FLMEI	4 acids	3	7

SAMPLEID	SPI/INI	Relative	Period	Method	Laboratory	Reference	
		depth					
		elevation					
HO3-1981.00 The last Permian							
HO3-1981.005	INI	-0.05	Permian	4 acids	3	7	
HO3-1981.01	INI	-0.06	Permian	4 acids	3	7	
HO3-1981.15	INI	-0.20	Permian	4 acids	3	7	
HO3-1981.45	INI	-0.50	Permian	LA-ICPMS	2		
HO3-1981.56	INI	-0.61	Permian	4 acids	3	7	
HO3-1981.86	INI	-0.91	Permian	4 acids	3	7	
HO3-1982.30	INI	-1.35	Permian	LA-ICPMS	2		
HO3-1983.00	INI	-2.05					
HO3-1983.200	INI	-2.25	Permian	LA-ICPMS	2		
HO3-1983.50	INI	-2.55	Permian	LA-ICPMS	2		
HO3-1983.67	INI	-2.72	Permian	LA-ICPMS	2		
HO3-1984.50	INI	-3.55	Permian	LA-ICPMS	2		
HO3-1985.30	INI	-4.35	Permian	LA-ICPMS	2		
HO3-1985.72	INI	-4.77	Permian	LA-ICPMS	2		
HO3-1985.76	INI	-4.81	Permian	4 acids	3	7	
HO3-1985.80	INI	-4.85	Permian	LA-ICPMS	2		
HO3-1986.14	INI	-5.19	Permian	LA-ICPMS	2		
HO3-1986.61	INI	-5.66	Permian	4 acids	3	7	
HO3-1986.75	INI	-5.80	Permian	LA-ICPMS	2		
HO3-1987.03	INI	-6.08	Permian	LA-ICPMS	2		
HO3-1987.06	INI	-6.11	Permian	4 acids	3	7	
HO3-1987.20	INI	-6.25	Permian	LA-ICPMS	2		
HO3-1987.50	INI	-6.55	Permian	LA-ICPMS	2		
HO3-1987.84	INI	-6.89	Permian	LA-ICPMS	2		
HO3-1988.01	INI	-7.06	Permian	4 acids	3	7	
HO3-1988.07	INI	-7.12	Permian	LA-ICPMS	2		
HO3-1989.50	INI	-8.55	Permian	LA-ICPMS	2		
HO3-1990.21	INI	-9.26	Permian	4 acids	3	7	
HO3-1992.26	INI	-11.31	Permian	4 acids	3	7	
HO3-2009.7 no							
sample	INI	-28.75					
Hov-1-19				EA/IRMS, IRMS, CVAFS		9	

- 1, CODES and ALS this work
- 2, CODES Analytical Laboratories
- 3, Curtin University Laboratories
- 4, δ^{34} S, TOC and δ^{13} C from Lounejeva *et al.* (2021)
- 5, Purcell (2010)
- 6, Large *et al.* (2014)
- 7, B, δ^{34} S, TOC, TOS and REE this work, other- Georgiev *et al.* (2020)
- 8, Thomas et al. (2004)
- 9, Sial et al. (2020)

Figure TESPY Downhole patterns

The downhole patterns for trace elements in pyrite (ppm py) from Redback 2 (RB2) and Hove 3 (HO3) boreholes. paired by similar behaviour. Each dot corresponds to geometric mean for framboidal and disseminated pyrite.

Figure TESPY Scatter plot as an alternative presentation of the main change in trace elements composition of pyrite composition from the Hovea Member sediments

LA-ICPMS analysis specifications.

The trace element contents of pyrite have been analysed across multiple sessions by laser ablationinductively coupled-mass spectrometry (LA-ICPMS) at CODES Analytical laboratory, University of Tasmania. The instrumentation involved a New Wave UP-213ss Nd-YAG Laser and a RESOlution 193 nm excimer laser, coupled to an Agilent 7700x ICP-MS. We used the laser beam size varying between 10 and 51 microns depending on the size of the pyrite crystals and kept laser fluence between 2.5 and 3.5 J/cm² and the repetition rate of 5 Hz. Each analysis included a 30 sec of gas background run (laser off) to properly assess detection limits, followed by a 40-60 sec signal acquisition in time-resolved mode. The primary calibration standards included the in-house reference materials STDGL2b2 (Danyushevsky et al., 2011) and STDGL-3 (Belousov et al., 2014) for quantification of siderophile and chalcophile elements, and the USGS reference material GSD-1G (Jochum et al., 2014), for quantification of lithophile elements. A natural pyrite standard PPP-1 (Gilbert et al., 2014) was used to quantify sulphur. Reference materials were analysed every hour during analytical sessions to correct instrumental drift. For every individual sample of 2 cm shale fragment, 12-15 LA-ICPMS spot analyses were performed on pyrite and five on the surrounding silicate matrix. The analytical method quantifies pyrite and matrix using the above reference materials compositions to get the raw results. The raw results have been reduced using the inhouse-developed method elucidated by Stepanov and collaborators (Stepanov et al., 2020), which is based on the Excel spreadsheets and the Basic scripts templates for mass balance and Fe-S linear regression. In addition, matrix-pyrite deconvolution become possible using the LADR (Laser Ablation Data Reduction) software from Norris Scientific (https://norsci.com/?p=ladr). The ioGAS software from IMDEX (https://iogas.imdexlimited.com) has been used for basic statistics (Supplementary data 3.xlsx) and presentation of the data.

LA-ICPMS data statistics

Dealing with the below detection limits values

Analysis of the results estimated below detection limits and suggests that (1) during the same analytical session, detection limits for elements with a longer washout time (mostly from the V–VI groups of elements, i.e. As, Sb, Bi, Se and Te) may vary up to two orders of magnitude, and (2) Au, Pt, Se, Cd, and Te are of the lowest concentration (\leq 1 ppm) in the Hovea Member sedimentary pyrites and yet represent a challenge for the LA-ICPMS method [Se (21% <DL), Cd (27% <DL) and Te (33% <DL)]. Most of the results for gold and platinum are not reported as only a few values yielded \geq 0.01 ppm with a high grade of uncertainty in the middle of the EPMEI. We assessed the average detection limit for each spot size and the minimal significant value for each element and substituted text "<DL value" by half of the minimal detection limit.

		Detection limit (pp	om)	
Spot size (microns)	19	29	51	DL29um/2
55Mn	47.888	5.962	7.598	2.981
59Co	4.581	0.671	0.789	0.3355
60Ni	3.239	1.495	0.725	0.7475
65Cu	19.382	3.086	3.283	1.543
66Zn	20.985	2.965	3.244	1.4825
75As	130.825	21.413	20.813	10.7065
77Se	108.807	31.529	21.447	15.7645
95Mo	0.991	0.112	0.151	0.056
107Ag	6.192	0.413	0.77	0.2065
111Cd	3.082	0.297	0.479	0.1485
121Sb	6.047	0.578	0.801	0.289
125Te	7.476	1.234	1.273	0.617
205TI	0.85	0.133	0.114	0.0665
208Pb	2.018	0.348	0.301	0.174
209Bi	0.566	0.058	0.077	0.029
Element	Half-DL	# off substitutions	1023	
Те	0.017	342	33%	
Cd	0.011	279	27%	
Se	0.718	216	21%	
Sb	0.04	66	6%	
Ag	0.0165	62	6%	
Zn	0.0725	16	2%	
TI	0.008	14	1%	
As	86.46	4	0.4%	
Pb	1.723			
Мо	0.1505			
Cu	0.123			
Bi	0.0025			
As	86.46			

Screening

Statistics were performed on the reduced data set after <DL substitution and filtering out high outliers. The reduced data set includes the data where Cu or Pb are <0.8%, and nickel-normalised ratios are within the limits 0.01<Cu/Ni<2, 0.01<Zn/Ni<10, an 0.1<As/Ni<10, suggested for sedimentary pyrite (Gregory *et al.,* 2015). The only data with As/Ni<0.1 correspond to the pyrite–marcasite intergrowth, as Ni content is very low <100 ppm.

Correlations

The strongest correlation Ni–Co is obvious from the scatter plots below also exposes high contents of Ni and Co in the Permian compared to the Triassic pyrites.

Spearman correlation factor: Triassic 0.82, Permian 0.39

Note a break between the two periods (Ni ~300 vs. Co~280 ppm)

The second strong correlation is between Pb and Bi but traceable only in Triassic sediments.

• Spearman correlation factor: Triassic 0.93, Permian 0.33

The scatter plots for other elements evidence a positive correlation could be observed for Ag, Pb, and Bi *vs* Cu; and Tl, Mo and Sb vs. Ni but only in Triassic pyrites.

 Note correlation in Triassic samples, where variation of the element concentration spans orders of magnitude, and a weak correlation between Mn and Cu despite both are of high concentration in the Triassic pyrites

Selenium weakly and positively (Spearman correlation factor +0.55) correlates with Co and it is more obvious in nodules and in anomalous aggregates. The Se/Co ratio is at least treble in the Triassic, mainly due to high Co content in the Permian mudstones.

PCA

Principal Components Analysis confirmed that Zn and Cd always move together, Mo and Mn stay apart from other elements, whereas As and Cu have opposite engine vectors.

PCA Repo	rt: Transfo	rm None,	Scaling tru	e (288 row	s) using co	orrelation i	natrix									1
																<u> </u>
Summary	Count															į
Rows	288															
Columns	15															
																i
Correlati	Mn ppm	Co ppm	Ni ppm	Cu ppm	Zn ppm	As ppm	Se ppm	Mo ppm	Ag ppm	Cd ppm	Sb ppm	Te ppm	Tl ppm	Pb ppm	Bi ppm	
on	ру	ру	ру	ру	ру	ру	ру	ру	ру	ру	ру	ру	ру	ру	ру	-
Mn ppm p	1	-0.2986	-0.2555	0.402	0.2711	-0.1912	0.1332	0.0637	0.1958	0.1304	0.2998	0.4121	-0.2246	0.1006	0.01759	<u>.</u>
Co ppm p	-0.2986	1	0.5782	-0.1956	-0.09312	0.4683	0.1653	0.1512	0.126	-0.0203	0.2212	0.0977	0.4587	0.5232	0.3826	į
NI ppm py	-0.2555	0.5782	0 2092	-0.2082	-0.1398	0.7036	0.05575	0.4013	0.2196	-0.09973	0.3635	-0.1309	0.7371	0.3208	-0.09789	-
Zn nnm n	0.402	-0.09312	-0.2082	0 3454	0.3434	-0.06505	0.2021	0.03240	0.3343	0.1855	0.2383	0.2343	-0.1821	0.3880	0.2232	ŀ
As ppm p	-0.1912	0.4683	0.7036	-0.1962	-0.06505	1	0.04446	0.1346	0.2462	-0.04228	0.2554	0.04498	0.5557	0.03544	0.08183	-
Se ppm p	0.1332	0.1653	0.05575	0.2621	0.2763	0.04446	1	0.2917	0.3712	0.1507	0.4459	0.3655	0.03221	0.3707	0.1648	
Mo ppm p	0.0637	0.1512	0.4013	0.03246	0.03979	0.1346	0.2917	1	0.1828	0.1787	0.4259	0.02095	0.4826	0.2783	-0.1498	
Ag ppm p	0.1958	0.126	0.2196	0.3545	0.2878	0.2462	0.3712	0.1828	1	0.1015	0.4306	0.2245	0.2401	0.2228	0.03398	<u> </u>
Cd ppm p	0.1304	-0.0203	-0.09973	0.1855	0.504	-0.04228	0.1507	0.1787	0.1015	1	0.2924	0.05344	-0.03848	0.02981	0.00986	<u> </u>
Sb ppm p	0.2998	0.2212	0.3635	0.2385	0.2554	0.259	0.4459	0.4259	0.4306	0.2924	0 4909	0.4898	0.2026	0.384	0.09463	-
TI ppm p	-0.2246	0.4587	0.7371	-0.1821	-0 117	0.5557	0.03221	0.4826	0.2245	-0.03848	0.2026	-0.1156	-0.1136	0.2342	-0.06543	-
Pb ppm p	0.1006	0.5232	0.3208	0.3886	0.0542	0.03544	0.3707	0.2783	0.2228	0.02981	0.384	0.2342	0.1735	1	0.4022	-
Bi ppm py	0.01759	0.3826	-0.09789	0.2252	0.02411	0.08183	0.1648	-0.1498	0.03398	0.00986	0.09463	0.4333	-0.06543	0.4022	1	
	Mn ppm	Co ppm	Ni ppm	Cu ppm	Zn ppm	As ppm	Se ppm	Mo ppm	Ag ppm	Cd ppm	Sb ppm	Te ppm	Tl ppm	Pb ppm	Bi ppm	
	ру	ру	ру	ру	ру	ру	ру	ру	ру	ру	ру	ру	ру	ру	ру	-
Eigenvect	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10	PC11	PC12	PC13	PC14	PC15	-
Mn ppm p	0.04568	0.3694	0.1098	0.3611	0.2013	0.1117	0.4557	0.1547	0.2905	0.06618	0.56/9	0.06556	0.1092	0.06605	0.05091	-
Ni nom ny	0.3240	-0.25	0.3327	0.2337	0.03623	-0.07654	0.01214	0.2422	0.1602	-0 1765	-0.09106	0.01753	-0.2334	-0 1773	0.00469	i-
Cu ppm p	0.1144	0.3788	-0.02682	0.1297	-0.2148	-0.5122	0.2264	-0.1528	-0.1874	-0.4098	-0.1494	-0.1919	-0.1733	0.3749	0.1003	-
Zn ppm p	0.1126	0.3197	0.2527	-0.4701	0.09772	-0.1456	-0.02559	0.1099	0.6197	-0.09192	-0.3267	0.2073	0.1064	-0.00977	-0.05697	
As ppm p	0.2857	-0.2809	0.01932	-0.1164	0.4802	-0.1176	0.08765	-0.0316	-0.112	-0.4672	0.2136	0.2283	-0.3121	-0.1254	-0.3615	
Se ppm p	0.2782	0.2174	-0.00987	0.04274	-0.1304	0.1183	-0.7286	0.00814	0.08314	-0.3266	0.3952	-0.1419	0.1267	0.0189	0.072	
Mo ppm p	0.2847	-0.05195	0.3356	0.2156	-0.3959	0.3428	0.04244	-0.4235	0.0884	0.02321	-0.08752	0.4353	-0.301	0.06977	0.02519	<u> </u>
Ag ppm p	0.2921	0.1413	0.1629	0.1285	0.2402	-0.53	-0.2639	-0.1283	-0.1601	0.5916	0.05849	0.1486	-0.07953	-0.1292	0.05387	-
Sh nnm n	0.1007	0.2103	0.3095	0.0559	0.1331	0.1702	0.2120	0.05979	-0.3739	0.1095	-0 3158	-0.2303	0.1219	0.1370	-0 2571	-
Te ppm p	0.1984	0.3014	-0.2561	0.1129	0.4066	0.3828	-0.02094	-0.1326	0.08575	0.06271	-0.33	-0.3633	-0.4037	-0.1436	0.1607	-
TI ppm py	0.3065	-0.3248	0.1692	0.05033	-0.0063	-0.07292	0.1528	-0.4105	0.266	0.06891	0.00501	-0.567	0.3384	0.00875	-0.2461	
Pb ppm p	0.3306	0.0905	-0.3081	0.08799	-0.482	-0.1083	0.1502	0.3389	0.06979	0.05008	-0.02953	-0.0422	-0.1055	-0.5319	-0.307	
Bi ppm py	0.1437	0.1297	-0.5994	-0.2226	0.03212	0.01564	0.1386	-0.4817	-0.05449	-0.01375	0.07884	0.3321	0.3926	-0.07915	0.1452	-
D <i>C</i> 4	Eigenvalu	Percent	Cumulativ	/e %												-
PC1 PC2	3.728	24.85	24.85													<u>.</u>
PC2 PC3	1.684	11.23	57.01													
PC4	1.11	7.403	64.41													
PC5	1.05	7.002	71.41													1
PC6	0.9137	6.091	77.51													
PC7	0.7733	5.156	82.66													<u>.</u>
PC8	0.5256	3.504	86.16													-
PC3	0.4707	2 901	92.24													
PC11	0.3867	2.578	94.82													1 1 1
PC12	0.2752	1.834	96.66													
PC13	0.2233	1.488	98.14													-
PC14	0.1744	1.163	99.31													: : :
PC15	0.1039	0.6926	100	DC4	DCF	DCC	DC7	DCO	DCO	DC10	DC11	DC12	DC12	DC14	DC15	4 4 4
Scaled Co	0.09	PC2 0.65	PC3 0.14	PC4 0.38	PC5 0.21	PC6 0.11	PC7 0.40	0 11	0.20	0.04	PC11 0.35	0.03	PC13	PC14 0.03	PC15 0.02	
Co ppm p	0.63	-0.41	-0.43	-0.27	-0.08	0.03	0.40	0.11	0.20	0.20	0.33	-0.01	-0.12	0.05	0.02	i
Ni ppm py	0.67	-0.62	0.13	0.06	0.04	-0.07	0.12	0.19	0.01	-0.12	-0.06	0.01	0.06	-0.07	0.24	
Cu ppm p	0.22	0.67	-0.03	0.14	-0.22	-0.49	0.20	-0.11	-0.13	-0.27	-0.09	-0.10	-0.08	0.16	0.03	1
Zn ppm p	0.22	0.57	0.33	-0.50	0.10	-0.14	-0.02	0.08	0.43	-0.06	-0.20	0.11	0.05	0.00	-0.02	1
As ppm p	0.55	-0.50	0.03	-0.12	0.49	-0.11	0.08	-0.02	-0.08	-0.31	0.13	0.12	-0.15	-0.05	-0.12	-
Se ppm p	0.54	0.39	-0.01	0.05	-0.13	0.11	-0.64	0.01	0.06	-0.22	0.25	-0.07	0.06	0.01	0.02	
Ag nnm n	0.55	-0.09	0.44	0.23	-0.41	-0 51	-0.04	-0.31	_0.06	0.02	-0.05	0.23	-0.14	-0.03	0.01	; ; ;
Cd ppm p	0.19	0.37	0.40	-0.67	-0.14	0.16	0.19	-0.04	-0.26	0.07	0.18	-0.12	-0.06	-0.07	0.02	-
Sb ppm p	0.74	0.30	0.18	0.10	0.13	0.27	0.03	0.21	-0.30	0.01	-0.20	0.05	0.21	0.10	-0.08	
Te ppm p	0.38	0.53	-0.33	0.12	0.42	0.37	-0.02	-0.10	0.06	0.04	-0.21	-0.19	-0.19	-0.06	0.05	
TI ppm py	0.59	-0.58	0.22	0.05	-0.01	-0.07	0.13	-0.30	0.18	0.05	0.00	-0.30	0.16	0.00	-0.08	<u>.</u>
Pb ppm p	0.64	0.16	-0.40	0.09	-0.49	-0.10	0.13	0.25	0.05	0.03	-0.02	-0.02	-0.05	-0.22	-0.10	
			/X	-11/3				-11 -15	-111/4			/				

Pb and Se-rich deteriorated (sooty) aggregates

Degraded oxidised framboidal pyrite aggregate Redback-2_3808.13. Barite globules and scarce pyrite framboids in a smectite–chlorite clayish matrix from the same sample.

The distribution of the trace elements in pyrite from this horizon RB2-3809.73 is bimodal and reveals anomalously high Pb (6000–24 000 ppm) and Se (500–2000 ppm) in pyrite likely corresponding to the deteriorated aggregates.

3808_13-RB2-54-2 8

HO3-1987.03 fossils (polished mount 2500 mm in diameter). Reflected and UV light.

References

- Belousov, I., Danyushevsky, L., Olin P., Gilbert, S., & Thompson, J. (2014). New calibration standard for LA-ICPMS analysis of sulphides. AGU, 2014 Fall Meeting. Retrieved from https://agu.confex.com/agu/fm14/webprogram/Paper19453.html.
- Danyushevsky, L., Robinson, P., Gilbert, S., Norman, M., Large, R., McGoldrick, P., & Shelley, M. (2011). Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: Standard development and consideration of matrix effects. Geochemistry: Exploration, Environment, Analysis, 11(1), 51–60. <u>https://doi.org/10.1144/1467-7873/09-244</u>
- Georgiev, S. V., Stein, H. J., Yang, G., Hannah, J. L., Böttcher, M. E., Grice, K., Holman, A. I., Turgeon, S., Simonsen, S., & Cloquet, C. (2020). Late Permian–Early Triassic environmental changes recorded by multi-isotope (Re–Os–N–Hg) data and trace metal distribution from the Hovea-3 section, Western Australia. Gondwana Research, 88, 353–372. https://doi.org/10.1016/j.gr.2020.07.007
- Gilbert, S. E., Danyushevsky, L. V., Rodemann, T., Shimizu, N., Gurenko, A., Meffre, S., Thomas, H., Large, R. R., & Death, D. (2014). Optimisation of laser parameters for the analysis of sulphur isotopes in sulphide minerals by laser ablation ICP-MS. Journal of Analytical Atomic Spectrometry, 29(6), 1042. <u>https://doi.org/10.1039/c4ja00011k</u>
- Gregory, D. D., Large, R. R., Halpin, J. A., Lounejeva, E., Lyons, T. W., Wu, S., Danyushevsky, L., Sack, P. J., Chappaz, A., Maslennikov, V. V., & Bull, S. W. (2015). Trace element content of sedimentary pyrite in black shales. Economic Geology, 110(6), 1389–1410. <u>https://doi.org/10.2113/econgeo.110.6.1389</u>
- Jochum, K. P. (2014). Reference Materials in Geochemical and Environmental Research. Analytical Geochemistry/Inorganic Instrumental Analysis (2nd ed., Vol. 15). Elsevier Ltd. <u>https://doi.org/10.1016/B978-0-</u> <u>08-095975-7.01403-0</u>
- Large, R., Halpin, J., Danyushevsky, L., Maslennikov, V., Bull, S., Long, J., Gregory, D., Lounejeva, E., Lyons, T., Sack, P., McGoldrick, P., & Calver, C. (2014). Trace element content of sedimentary pyrite as a new proxy for deep-time ocean–atmosphere evolution. Earth and Planetary Science Letters, 389, 209–220. <u>https://doi.org/10.1016/j.epsl.2013.12.020</u>
- Lounejeva, E., Steadman, J. A., Rodemann, T., Large, R. R., Danyushevsky, L., Mantle, D., Grice, K., & Algeo, T. J. (2021). Marcasite at the Permian–Triassic Transition. In R. E. Ernst, A. J. Dickson & A. Bekker (Eds.), Large Igneous Provinces <u>https://doi.org/10.1002/9781119507444.ch16</u>
- Purcell R. (2010). Redback-2 Completion report. Origin Ltd.
- Sial, A., Chen, J., Lacerda, L., Korte, C., Spangenberg, J., Silva-Tamayo, J., Gaucher, C., Ferreira, V., Barbosa, J., Pereira, N., & Benigno, A. (2020). Globally enhanced Hg deposition and Hg isotopes in sections straddling the Permian–Triassic boundary: Link to volcanism. Palaeogeography, Palaeoclimatology, Palaeoecology, 540, 109537. <u>https://doi.org/10.1016/j.palaeo.2019.109537</u>
- Stepanov, A., Danyushevsky, L., Large, R., Mukherjee, I., & Zhukova, I. (2020). Deconvolution of the composition of finegrained pyrite in sedimentary matrix by regression of time-resolved LA-ICP-MS data. American Mineralogist, 105(6), 820–832. <u>https://doi.org/10.2138/am-2020-7202</u>
- Thomas, B. M., Willink, R. J., Grice, K., Twitchett, R. J., Purcell, R. R., Archbold, N. W., George, A. D., Tye, S., Alexander, R., Foster, C. B., & Barber, C. J. (2004). Unique marine Permian–Triassic boundary section from Western Australia. Australian Journal of Earth Sciences, 51(3), 423–430. <u>https://doi.org/10.1111/j.1400-0952.2004.01066.x</u>

Petrographic observations

This document contains some petrographic observations about pyrite and other textures in Redback-2 core sample. Here we preserve double sample ID, the depth and the number given during sampling.

3788.7_RB2-06A	е Со рит 100 рит	Framboidal pyrite
3790.0_RB2-09	12.2 bor jum	Framboidal pyrite in a microlaminated mudstone
3791.7_RB2-10		Disseminated pyrite in a brittle microlaminated siltstone
3792.9_RB2-11		Framboidal aggregate ~100 um
3793.8_RB2-12		Only diagenetic

3795.7_RB2-13		н 202
3796.8_RB2-14	RE3.4 50 µm	Only diagenetic anhedral pyrite.
3797.3_RB2-5B		Porous pyrite nodule Molybdenum ~ 500 ppm
3797.8_RB2-15	С 18242 102 рт	Image and 3 analyses
3798.3_RB2-16	R82-14 5000.001	Framboids and a massive pyrite nodule

r		
3799.2_RB2-18		Framboidal, sooty
3799.93_RB2-19	8249	Framboidal
3800.4_RB2-20		Porous pyrite nodule, the entire sample
3801.12_RB2-21	R82-21 0.1 mm	Framboidal pyrite
3801.7_RB2-22	RE-22 0.2 mm	Framboidal pyrite

3802.1_RB2-23	R82-23 0.1 mm	Framboidal pyrite and disseminated
3803.2_RB2-24A	TEZ-244 0.5 mm	Boundary between microlaminated and organic-rich black shale with framboidal aggregates
3804.6_RB2-25	R8225 0.2 mm	Framboidal pyrite and disseminated
3805.4_RB2-26		Framboidal pyrite and disseminated
3806.1_RB-51	100 µm	Framboidal pyrite aggregates, spongy aggregates and disseminated

3806.51_RB2-56 and 3806.55_RB2- 27		Euhedral pyrite and marcasite, and very fine disseminated pyrite
3807.1_RB2-52	201 .m	Angular siderite and very fine framboids
3807.35_RB2-53		Degraded framboidal pyrite aggregates

3808.13_RB2-54		Degraded oxidised framboidal pyrite aggregate. Anomalously high Pb (6000–24 000 ppm) and Se (500–2000 ppm)
3808.9_RB2-28		Rare framboids in a poorly sorted clastic matrix
3809.6_RB2-29	RB2-29 0.2 mm	R82-29 0.05 mm Spongy framboidal aggregate
3809.73_RB2-55	100 µm	Framboids 35 um each Highly oxidised framboidal aggreagte (molty)

3810.4_RB2-45	1400 2.112 A.177 A.163 A.1 (A.201 1 €■ An other 100 (1 1 - 1000) Best (1 #■	Framboidal aggregates and single
		framboids
3811.0_RB2-46		Single and framboidal aggregates
3811.8_RB2-30	0.1mm	An example of framboidal nodule growing. Some boundaries between individual framboids still remain in this pyrite nodule, likely of diagenetic origin.
3812.2_RB2-47		Framboidal and nodule
3812.7_RB2-31	200 µm	Pyrite nodule, likely diagenetic.

3813.6_RB2-48	R82-38136 500 µm	Pyrite nodule with well-preserved framboidal texture.
3814.5-RB2-2		Pyritised fossil nodule. High As–Ni–Co, comparable with RB2-3812.7 Also, see the LA-ICPMS image in archives.
3815.95_RB2-49	RB2-3815.95 200 µm	Framboidal pyrite aggregate
3816.9_RB2-32	200 µm	Framboidal pyrite aggregates
3818.1_RB2-33		Framboidal pyrite aggregates and single framboids in the matrix

3821 3 BB2-34	 Because with 10 (2016) Construction of the construction of t	Eramboidal pyrite aggregate
3823.8_RB2-35	RE2-35 0.2 mm	Nodule (used by D Gregory for S isotopes) and framboidal pyrite
3825.6_RB2-36		
3827.4_RB2-37	REZ-37	
3830.6_RB2-38	RE2-33 0.05 mm	

3831.2_RB2-39	R82-39 0.5 mm	Pyrite nodule ~2 cm large and framboidal aggregates
3832.1_RB2-01	20 µ1	Scarce framboidal pyrite
3834.3_RB2-40	RE2-40 0.1 mm	Framboidal aggregate
3835.3_RB2-50		Pyritised fossils, likely sponge spicules